Symmetric silicon microring resonator optical crossbar array for accelerated inference and training in deep learning

Author:

Tang RuiORCID,Ohno Shuhei,Tanizawa Ken1ORCID,Ikeda Kazuhiro2ORCID,Okano Makoto2ORCID,Toprasertpong KasiditORCID,Takagi Shinichi,Takenaka MitsuruORCID

Affiliation:

1. Tamagawa University

2. National Institute of Advanced Industrial Science and Technology

Abstract

Photonic integrated circuits are emerging as a promising platform for accelerating matrix multiplications in deep learning, leveraging the inherent parallel nature of light. Although various schemes have been proposed and demonstrated to realize such photonic matrix accelerators, the in situ training of artificial neural networks using photonic accelerators remains challenging due to the difficulty of direct on-chip backpropagation on a photonic chip. In this work, we propose a silicon microring resonator (MRR) optical crossbar array with a symmetric structure that allows for simple on-chip backpropagation, potentially enabling the acceleration of both the inference and training phases of deep learning. We demonstrate a 4×4 circuit on a Si-on-insulator platform and use it to perform inference tasks of a simple neural network for classifying iris flowers, achieving a classification accuracy of 93.3%. Subsequently, we train the neural network using simulated on-chip backpropagation and achieve an accuracy of 91.1% in the same inference task after training. Furthermore, we simulate a convolutional neural network for handwritten digit recognition, using a 9×9 MRR crossbar array to perform the convolution operations. This work contributes to the realization of compact and energy-efficient photonic accelerators for deep learning.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3