Inverse-designed taper configuration for the enhancement of integrated 1 × 4 silicon photonic power splitters

Author:

Hong Seokjin1ORCID,Yoon Jinhyeong1,Kim Junhyeong1ORCID,Neseli Berkay1ORCID,Kim Jae-Yong1ORCID,Park Hyo-Hoon1,Kurt Hamza1

Affiliation:

1. The School of Electrical Engineering , 34968 Korea Advanced Institute of Science and Technology (KAIST) , Daejeon , Republic of Korea

Abstract

Abstract Once light is coupled to a photonic chip, its efficient distribution in terms of power splitting throughout silicon photonic circuits is very crucial. We present two types of 1 × 4 power splitters with different splitting ratios of 1:1:1:1 and 2:1:1:2. Various taper configurations were compared and analyzed to find the suitable configuration for the power splitter, and among them, parabolic tapers were chosen. The design parameters of the power splitter were determined by means of solving inverse design problems via incorporating particle swarm optimization that allows for overcoming the limitation of the intuition-based brute-force approach. The front and rear portions of the power splitters were optimized sequentially to alleviate local minima issues. The proposed power splitters have a compact footprint of 12.32 × 5 μm2 and can be fabricated through a CMOS-compatible fabrication process. Two-stage power splitter trees were measured to enhance reliability in an experiment. As a result, the power splitter with a splitting ratio of 1:1:1:1 exhibited an experimentally measured insertion loss below 0.61 dB and an imbalance below 1.01 dB within the bandwidth of 1,518–1,565 nm. Also, the power splitter with a splitting ratio of 2:1:1:2 showed an insertion loss below 0.52 dB and a targeted imbalance below 1.15 dB within the bandwidth of 1,526–1,570 nm. Such inverse-designed power splitters can be an essential part of many large-scale photonic circuits including optical phased arrays, programmable photonics, and photonic computing chips.

Funder

BK21 Four

KAIST UP program

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3