Silicon photonic devices and integrated circuits

Author:

Dong Po1,Chen Young-Kai2,Duan Guang-Hua3,Neilson David T.1

Affiliation:

1. 1Bell Labs, Alcatel-Lucent, 791 Holmdel Road, Holmdel, NJ 07733, USA

2. 2Bell Labs, Alcatel-Lucent, 600 Mountain Avenue, Murray Hill, NJ 07974, USA

3. 3III-V Lab, a joint lab of ‘Alcatel-Lucent Bell Labs France’, ‘Thales Research and Technology’ and ‘CEA Leti’, Campus Polytechnique, 1, Avenue A. Fresnel, 91767 Palaiseau cedex, France

Abstract

AbstractSilicon photonic devices and integrated circuits have undergone rapid and significant progresses during the last decade, transitioning from research topics in universities to product development in corporations. Silicon photonics is anticipated to be a disruptive optical technology for data communications, with applications such as intra-chip interconnects, short-reach communications in datacenters and supercomputers, and long-haul optical transmissions. Bell Labs, as the research organization of Alcatel-Lucent, a network system vendor, has an optimal position to identify the full potential of silicon photonics both in the applications and in its technical merits. Additionally it has demonstrated novel and improved high-performance optical devices, and implemented multi-function photonic integrated circuits to fulfill various communication applications. In this paper, we review our silicon photonic programs and main achievements during recent years. For devices, we review high-performance single-drive push-pull silicon Mach-Zehnder modulators, hybrid silicon/III-V lasers and silicon nitride-assisted polarization rotators. For photonic circuits, we review silicon/silicon nitride integration platforms to implement wavelength-division multiplexing receivers and transmitters. In addition, we show silicon photonic circuits are well suited for dual-polarization optical coherent transmitters and receivers, geared for advanced modulation formats. We also discuss various applications in the field of communication which may benefit from implementation in silicon photonics.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 221 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3