Ultrasensitive and fast photoresponse in graphene/silicon-on-insulator hybrid structure by manipulating the photogating effect

Author:

Jiang Hao12,Nie Changbin2,Fu Jintao2,Tang Linlong2,Shen Jun2,Sun Feiying2,Sun Jiuxun1,zhu Meng3,Feng Shuanglong2,Liu Yang4,Shi Haofei2,Wei Xingzhan2ORCID

Affiliation:

1. School of Physics , University of Electronic Science and Technology of China , Chengdu, 610054 , China

2. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing, 400714 , China

3. TianJin Jinhang Insitute of Technical Physics , Tianjin, 300192 , China

4. Department of Physics, Harbin Institute of Technology , Harbin, 150001 , China

Abstract

Abstract The hybrid structures of graphene with semiconductor materials based on photogating effect have attracted extensive interest in recent years due to the ultrahigh responsivity. However, the responsivity (or gain) was increased at the expense of response time. In this paper, we devise a mechanism which can obtain an enhanced responsivity and fast response time simultaneously by manipulating the photogating effect (MPE). This concept is demonstrated by using a graphene/silicon-on-insulator (GSOI) hybrid structure. An ultrahigh responsivity of more than 107 A/W and a fast response time of 90 µs were obtained. The specific detectivity D* was measured to be 1.46 ⨯ 1013 Jones at a wavelength of 532 nm. The Silvaco TCAD modeling was carried out to explain the manipulation effect, which was further verified by the GSOI devices with different doping levels of graphene in the experiment. The proposed mechanism provides excellent guidance for modulating carrier distribution and transport, representing a new route to improve the performance of graphene/semiconductor hybrid photodetectors.

Funder

Natural Science Foundation of Chongqing, China

National Key R&D Program of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3