Plasmonic graphene/perovskite Schottky barrier photodetector

Author:

Shahriyari Hadiseh1,Hatefi-Kargan Naser1ORCID,Daraei Ahmadreza1ORCID

Affiliation:

1. Department of Physics, Faculty of Science , University of Sistan and Baluchestan , Zahedan , Iran

Abstract

Abstract In this paper the performance of a graphene/perovskite Schottky barrier photodetector is investigated theoretically for detecting infrared radiation within the spectral region of 7.5–10 μm. In order to increase the responsivity of the photodetector plasmon–polaritons are excited in the graphene layer within the specified spectral region with the aid of dielectric grating fabricated inside the photodetector structure. The results show that with the increase of the Fermi energy level in the graphene layer the wavelength where plasmon–polaritons are excited is shifted toward shorter wavelengths. This property enables the photodetector for tunable detection. The excitation of plasmon–polaritons localizes the infrared radiation incident on the photodetector to the graphene layer with a full width at half maximum of ≈12.6 nm. This localization increases the absorbance of the graphene layer considerably at peak detection wavelengths where plasmon–polaritons are excited, so that at peak detection wavelengths the absorbance of the graphene layer inside the photodetector is higher than 20 % while without the excitation of plasmon–polaritons the absorbance of the same layer is below 0.05 %. Due to this effect the responsivities of the photodetector at wavelengths where plasmon–polaritons are excited, increase more than 535 times relative to the case where plasmon–polaritons are not excited. Therefore the excitation of plasmon–polaritons not only increases the responsivity of the photodetector significantly but also enables the photodetector for tunable detection by varying the Fermi energy level in the graphene layer.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3