Abstract
AbstractNext-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
330 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献