Photonic crystal L3 cavity laser fabricated using maskless digital photolithography

Author:

Kang Minsu12,Jin Heesoo12,Jeon Heonsu123ORCID

Affiliation:

1. Department of Physics and Astronomy , Seoul National University , Seoul 08826 , Republic of Korea

2. Inter-university Semiconductor Research Centre , Seoul National University , Seoul 08826 , Republic of Korea

3. Institute of Applied Physics , Seoul National University , Seoul 08826 , Republic of Korea

Abstract

Abstract Projection photolithography using an extreme-ultraviolet light source is the core technology that has enabled patterning on the scale of a few nanometers that is required for modern electronic chips. However, this high-end system is neither affordable nor needed for photonics where critical feature sizes are of 100s of nanometers (or of submicron). Although electron-beam lithography can provide a means for photonic device fabrication, it suffers from extremely low throughput. Therefore, a lithographic technique for submicron pattern generation at high throughput and low cost is in high demand. This group recently showed that maskless digital photolithography (MDPL), a convenient and versatile photolithographic technique that requires no photomask, could potentially address this demand by demonstrating photonic crystal (PhC) patterns with submicron periodicity and associated PhC band-edge lasers. In this paper, we report the fabrication of a PhC L3 cavity laser, which contains irregular air holes in terms of their positions and sizes, using the MDPL technique. Successful generation of such an aperiodic and nontrivial submicron pattern requires thorough understanding and scrupulous manipulation on light diffraction. Our achievements should provide the concrete foundation upon which compact, versatile, convenient, speedy, and economical lithographic tools for arbitrary submicron pattern generation can be developed.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3