Affiliation:
1. Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
Abstract
Abstract
In a tip-enhanced Raman spectroscopy (TERS) system, using a sharp nanotip that comprises a noble metal is critical to attaining high spatial resolution and highly enhanced Raman scattering. A strongly acidic solution is typically used to fabricate gold nanotips in a quick and reliable manner. However, using an acidic solution could corrode the etching system, thereby posing hazardous problems. Therefore, both the corrosion of the etching system and human error induced by the conventional method considerably decrease the quality and reproducibility of the tip. In this study, we significantly increased the reproducibility of tip fabrication by automating the electrochemical etching system. In addition, we optimized the etching conditions for an etchant that comprised a KCl solution to which ethanol was added to overcome the limitations of the acidic etchant. The automated etching system significantly increases the yield rate of tip-fabrication reproducibility from 65 to 95%. The standard deviation of the radius of curvature decreased to 7.3 nm with an average radius of curvature of 30 nm. Accordingly, the automated electrochemical etching system might improve the efficiency of TERS.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献