Probing the multi-disordered nanoscale alloy at the interface of lateral heterostructure of MoS2–WS2

Author:

Kim Dong Hyeon12,Lee Chanwoo2,Kim Sung Hyuk12,Jeong Byeong Geun2,Yun Seok Joon3,Suh Hyeong Chan1,Lee Dongki4,Kim Ki Kang2,Jeong Mun Seok1ORCID

Affiliation:

1. Department of Physics , Hanyang University , Seoul 04763 , Korea

2. Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Korea

3. Department of Semiconductor , University of Ulsan , Ulsan 44610 , Republic of Korea

4. Department of Nanotechnology and Advanced Materials Engineering , Sejong University , Seoul 05006 , Korea

Abstract

Abstract Transition metal dichalcogenide (TMDs) heterostructure, particularly the lateral heterostructure of two different TMDs, is gaining attention as ultrathin photonic devices based on the charge transfer (CT) excitons generated at the junction. However, the characteristics of the interface of the lateral heterostructure, determining the electronic band structure and alignment at the heterojunction region, have rarely been studied due to the limited spatial resolution of nondestructive analysis systems. In this study, we investigated the confined phonons resulting from the phonon-disorder scattering process involving multiple disorders at the lateral heterostructure interface of MoS2–WS2 to prove the consequences of disorder-mediated deformation in the band structure. Moreover, we directly observed variations in the metal composition of the multi-disordered nanoscale alloy Mo1−x W x S2, consisting of atomic vacancies, crystal edges, and distinct nanocrystallites. Our findings through tip-enhanced Raman spectroscopy (TERS) imply that a tens of nanometer area of continuous TMDs alloy forms the multi-disordered interface of the lateral heterostructure. The results of this study could present the way for the evaluation of the TMDs lateral heterostructure for excitonic applications.

Funder

Agency for Defense Development

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3