Investigating heterogeneous defects in single-crystalline WS2 via tip-enhanced Raman spectroscopy

Author:

Lee Chanwoo,Jeong Byeong Geun,Kim Sung Hyuk,Kim Dong Hyeon,Yun Seok Joon,Choi Wooseon,An Sung-Jin,Lee Dongki,Kim Young-MinORCID,Kim Ki Kang,Lee Seung Mi,Jeong Mun SeokORCID

Abstract

AbstractNanoscale defects in two-dimensional (2D) transition metal dichalcogenides (TMDs) alter their intrinsic optical and electronic properties, and such defects require investigation. Atomic-resolution techniques such as transmission electron microscopy detect nanoscale defects accurately but are limited in terms of clarifying precise chemical and optical characteristics. In this study, we investigated nanoscale heterogeneous defects in a single-crystalline hexagonal WS2 monolayer using tip-enhanced Raman spectroscopy (TERS). We observed the Raman properties of heterogeneous defects, which are indicated by the shifted A1′(Γ) modes appearing on the W- and S-edge domains, respectively, with defect-induced Raman (D) mode. In the edge region, various Raman features occur with nanoscale defects. In addition, the TERS signals from single-crystalline WS2 indicate the existence of two majority defects in each domain, which imply S- and W-dominated vacancies. Quantum mechanical computations were performed for each majority defect and demonstrated the defect-induced variation in the vibrational phonon modes. TERS imaging promises to be a powerful technique for determining assorted nanoscale heterogeneous defects as well as for investigating the properties of other nanomaterials.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3