Abstract
AbstractNanoscale defects in two-dimensional (2D) transition metal dichalcogenides (TMDs) alter their intrinsic optical and electronic properties, and such defects require investigation. Atomic-resolution techniques such as transmission electron microscopy detect nanoscale defects accurately but are limited in terms of clarifying precise chemical and optical characteristics. In this study, we investigated nanoscale heterogeneous defects in a single-crystalline hexagonal WS2 monolayer using tip-enhanced Raman spectroscopy (TERS). We observed the Raman properties of heterogeneous defects, which are indicated by the shifted A1′(Γ) modes appearing on the W- and S-edge domains, respectively, with defect-induced Raman (D) mode. In the edge region, various Raman features occur with nanoscale defects. In addition, the TERS signals from single-crystalline WS2 indicate the existence of two majority defects in each domain, which imply S- and W-dominated vacancies. Quantum mechanical computations were performed for each majority defect and demonstrated the defect-induced variation in the vibrational phonon modes. TERS imaging promises to be a powerful technique for determining assorted nanoscale heterogeneous defects as well as for investigating the properties of other nanomaterials.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献