High pressure impact on changes in potato starch granules

Author:

Słomińska Lucyna1,Zielonka Roman2,Jarosławski Leszek2,Krupska Aldona3,Szlaferek Andrzej3,Kowalski Wojciech3,Tomaszewska-Gras Jolanta4,Nowicki Marek5

Affiliation:

1. University of Zielona Góra, Faculty of Biological Sciences, Zielona Góra, Poland

2. Institute of Agricultural and Food Biotechnology, Department of Food Concentrates and Starch Products, Poznań, Poland

3. Polish Academy of Sciences, Institute of Molecular Physics, Poznań, Poland

4. Poznań University of Life Sciences, Faculty of Food Sciences and Nutrition, Poznań, Poland

5. Poznań University of Technology, Faculty of Technical Physics, Poznań, Poland

Abstract

Abstract Air dry potato starch (84.9% d.s.) was subjected to pressurizing under the pressure of 50, 100, 250, 500, 750, 1000 and 2000 MPa for 1 h. The physical properties of pressurized starch, such as morphology, surface and crystalline structure, gelatinization parameters, were studied by means of scanning and atomic force microscopy (SEM/AFM), X-ray diffraction (X-ray), differential scanning calorimetry (DSC). The susceptibility to the amylolytic enzyme (α-amylase) was also measured. Application of pressure in the range of 50–2000 MPa results in an increase in the compressed potato starch bulk density, change in the contours of the granules from oval to polyhedral, increase in the roughness of the granule surface, vanishing of the X-ray reflexes generated by the orthogonal structure and weakening of the reflexes generated by the hexagonal structure, lowering of the enthalpy of starch gelatinization, and the enhancement of hydrolytic susceptibility of starch granules to the amylolytic enzyme.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3