Performance Analysis of Fault Detection and Identification for Multiple Faults in GNSS and GNSS/INS Integration

Author:

Alqurashi Muwaffaq,Wang Jinling

Abstract

AbstractFor positioning, navigation and timing (PNT) purposes, GNSS or GNSS/INS integration is utilised to provide real-time solutions. However, any potential sensor failures or faulty measurements due to malfunctions of sensor components or harsh operating environments may cause unsatisfactory estimation for PNT parameters. The inability for immediate detecting faulty measurements or sensor component failures will reduce the overall performance of the system. So, real time detection and identification of faulty measurements is required to make the system more accurate and reliable for different applications that need real time solutions such as real time mapping for safety or emergency purposes. Consequently, it is necessary to implement an online fault detection and isolation (FDI) algorithm which is a statistic-based approach to detect and identify multiple faults.However, further investigations on the performance of the FDI for multiple fault scenarios is still required. In this paper, the performance of the FDI method under multiple fault scenarios is evaluated, e.g., for two, three and four faults in the GNSS and GNSS/INS measurements under different conditions of visible satellites and satellites geometry. Besides, the reliability (e.g., MDB) and separability (correlation coefficients between faults detection statistics) measures are also investigated to measure the capability of the FDI method. A performance analysis of the FDI method is conducted under the geometric constraints, to show the importance of the FDI method in terms of fault detectability and separability for robust positioning and navigation for real time applications.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modelling and Simulation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3