A Fault Diagnosis Method for a Missile Air Data System Based on Unscented Kalman Filter and Inception V3 Methods

Author:

Wang Ziyue1,Cheng Yuehua1ORCID,Jiang Bin1ORCID,Guo Kun2,Hu Hengsong1

Affiliation:

1. College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Beijing Institute of Mechanical and Electrical Engineering, Beijing 100074, China

Abstract

Due to the complexity of the missile air data system (ADS) and the harshness of the environment in which its sensors operate, the effectiveness of traditional fault diagnosis methods is significantly reduced. To this end, this paper proposes a method fusing the model and neural network based on unscented Kalman filter (UKF) and Inception V3 to enhance fault diagnosis performance. Initially, the unscented Kalman filter model is established based on an atmospheric system model to accurately estimate normal states. Subsequently, in order to solve the difficulties such as threshold setting in existing fault diagnosis methods based on residual observers, the UKF model is combined with a neural network, where innovation and residual sequences of the UKF model are extracted as inputs for the neural network model to amplify fault characteristics. Then, multi-scale features are extracted by the Inception V3 network, combined with the efficient channel attention (ECA) mechanism to improve diagnostic results. Finally, the proposed algorithm is validated on a missile simulation platform. The results show that, compared to traditional methods, the proposed method achieves higher accuracy and maintains its lightweight nature simultaneously, which demonstrates its efficiency and potential of fault diagnosis in missile air data systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation Integration Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3