Synchronization in wireless biomedical-sensor networks with Bluetooth Low Energy

Author:

Bideaux André1,Zimmermann Bernd1,Hey Stefan1,Stork Wilhelm1

Affiliation:

1. 1Karlsruhe Institute of Technology, Institute for Information Processing Technologies (ITIV), Engesserstr. 5, D-76131 Karlsruhe, Germany

Abstract

AbstractBluetooth Low Energy (BLE) has reduced the energy consumption for sensor nodes drastically. One major reason for this improvement is a non-continuous connection between the nodes. But this causes also a nondeterministic data transmission time. Most synchronization protocols are influenced by this characteristic, with the result of less accuracy. In wireless body sensor networks this accuracy is often of vital importance. Therefore this paper evaluates different synchronization principles customized for BLE.For the evaluation measurements we used two BLE modules connected to one micro controller. This setup allowed us to calculate the error directly for the different principles. First we measured the send-receive time as a reference which influences most synchronization protocols. This time is directly affected by random transmission delays of BLE. Second we used the time difference between receiving and acknowledging a message as principle (A). The last principle (B) can only be used between nodes that use BLE that don’t require a constant connection, because it needs to connect and disconnect the nodes. After a new connection the “connected” events occur in the BLE nodes almost at the same time and can be used for synchronization. The reference measurement showed the worst results. The average delay was 4.76 ms with a standard deviation of 2.32 ms. Principle (A) showed average delays of 7.51 ms, which was almost exactly 1 connection interval in our setup. The standard deviation was 0.41 ms. Principle (B) showed the best results with an average time difference of 39.92 μs and a standard deviation of 14.19 μsThe results showed that with the principles (A) and (B) the synchronization of nodes can be highly improved compared to the reference. In future we will test the principles with synchronization protocols in real sensor nodes also with respect to the processor load.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3