Application-Layer Time Synchronization and Data Alignment Method for Multichannel Biosignal Sensors Using BLE Protocol

Author:

Li Jianan1ORCID,Quintin Eric2,Wang He1,McDonald Benjamin E.2ORCID,Farrell Todd R.2ORCID,Huang Xinming1ORCID,Clancy Edward A.1ORCID

Affiliation:

1. Worcester Polytechnic Institute, Worcester, MA 01609, USA

2. Liberating Technologies, Inc., Holliston, MA 01746, USA

Abstract

Wearable wireless biomedical sensors have emerged as a rapidly growing research field. For many biomedical signals, multiple sensors distributed about the body without local wired connections are required. However, designing multisite systems at low cost with low latency and high precision time synchronization of acquired data is an unsolved problem. Current solutions use custom wireless protocols or extra hardware for synchronization, forming custom systems with high power consumption that prohibit migration between commercial microcontrollers. We aimed to develop a better solution. We successfully developed a low-latency, Bluetooth low energy (BLE)-based data alignment method, implemented in the BLE application layer, making it transferable between manufacturer devices. The time synchronization method was tested on two commercial BLE platforms by inputting common sinusoidal input signals (over a range of frequencies) to evaluate time alignment performance between two independent peripheral nodes. Our best time synchronization and data alignment method achieved absolute time differences of 69 ± 71 μs for a Texas Instruments (TI) platform and 477 ± 490 μs for a Nordic platform. Their 95th percentile absolute errors were more comparable—under 1.8 ms for each. Our method is transferable between commercial microcontrollers and is sufficient for many biomedical applications.

Funder

US Army Medical Research and Materiel Command

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3