Comparison between Two Time Synchronization and Data Alignment Methods for Multi-Channel Wearable Biosensor Systems Using BLE Protocol

Author:

Wang He1,Li Jianan1,McDonald Benjamin E.2ORCID,Farrell Todd R.2,Huang Xinming1ORCID,Clancy Edward A.1ORCID

Affiliation:

1. Worcester Polytechnic Institute, Worcester, MA 01609, USA

2. Liberating Technologies, Inc. (LTI), Holliston, MA 01746, USA

Abstract

Wireless wearable sensor systems for biomedical signal acquisition have developed rapidly in recent years. Multiple sensors are often deployed for monitoring common bioelectric signals, such as EEG (electroencephalogram), ECG (electrocardiogram), and EMG (electromyogram). Compared with ZigBee and low-power Wi-Fi, Bluetooth Low Energy (BLE) can be a more suitable wireless protocol for such systems. However, current time synchronization methods for BLE multi-channel systems, via either BLE beacon transmissions or additional hardware, cannot satisfy the requirements of high throughput with low latency, transferability between commercial devices, and low energy consumption. We developed a time synchronization and simple data alignment (SDA) algorithm, which was implemented in the BLE application layer without the need for additional hardware. We further developed a linear interpolation data alignment (LIDA) algorithm to improve upon SDA. We tested our algorithms using sinusoidal input signals at different frequencies (10 to 210 Hz in increments of 20 Hz—frequencies spanning much of the relevant range of EEG, ECG, and EMG signals) on Texas Instruments (TI) CC26XX family devices, with two peripheral nodes communicating with one central node. The analysis was performed offline. The lowest average (±standard deviation) absolute time alignment error between the two peripheral nodes achieved by the SDA algorithm was 384.3 ± 386.5 μs, while that of the LIDA algorithm was 189.9 ± 204.7 μs. For all sinusoidal frequencies tested, the performance of LIDA was always statistically better than that of SDA. These average alignment errors were quite low—well below one sample period for commonly acquired bioelectric signals.

Funder

US Army Medical Research and Materiel Command

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3