Micro-Raman Scattering of Nanoscale Silicon in Amorphous and Porous Silicon

Author:

Periasamy Sangeetha1,Venkidusamy Sasirekha2,Venkatesan Ragavendran3,Mayandi Jeyanthinath3,Pearce Joshua4,Selj Josefine Helene5,Veerabahu Ramakrishnan6

Affiliation:

1. Department of Laser Studies , School of Physics , Madurai Kamaraj University , Madurai-625 021 , India

2. Department of Physics , Avinasilingam University , Coimbatore-641 043 , India

3. Department of Materials Science , School of Chemistry , Madurai Kamaraj University , Madurai-625 021 , India

4. Department of Materials Science and Engineering , Michigan Technological University , Houghton , MI 49931, USA

5. Department of Solar Energy , Institute for Energy Technology , Instituttveien 18 , Kjeller 2007 , Norway

6. Indian Institute of Science Education and Research Thiruvananthapuram , India

Abstract

Abstract: The size effect of nanoscale silicon in both amorphous and porous silicon was investigated with micro-Raman spectroscopy. Silicon nanostructures in amorphous silicon were deposited on quartz substrates by plasma enhanced chemical vapor deposition (PECVD) with deposition powers of 15, 30 and 50 W. Micro-Raman spectra of the nanostructured silicon show the T2g Raman active mode shifting from the 521 cm−1 crystalline Si Raman line to 494, 499 and 504 cm−1 as deposition power increased. Large Raman mode shifts, up to 27 cm−1 and broadening up to 23 cm−1 of the T2g Raman-active mode is attributed to a phonon confinement effect. The analysis of micro-Raman scattering data is useful to understand the role of deposition condition of the silicon sample. In addition, micro-Raman scattering intensity of porous silicon prepared using various current densities such as 10, 50 and 125 mA/cm2 has also been investigated. The effect of phonon confinement on the nanoscale porous silicon has been quantified. The relationship between Raman shift and stress on the porous silicon has been evaluated.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3