Synthesis of passively prelithiated SiOx nanoparticles for Li‐ion battery anode

Author:

Kim Nakwon12,Lee Wooyoung12,Kim Joonsoo1,Kim Daeil1,Jang Boyun1ORCID

Affiliation:

1. Energy Storage Laboratory Korea Institute of Energy Research Daejeon Republic of Korea

2. Department of Materials Science and Engineering Korea University Seoul Republic of Korea

Abstract

AbstractA new concept of passive prelithiation to SiOx nanoparticles is introduced and evaluated by investigating their nanostructures and electrochemical properties. Specifically, Li is incorporated into SiOx nanoparticles during the nanoparticle synthesis. We obtain Si‐Li‐O‐based nanoparticles, which we call SILIO; these are much larger than SiOx particles and have totally different nanostructures. Due to nanostructures with various phase distributions, SILIO nanoparticles show enhanced electrochemical properties. The initial reversible capacity (IRC) and initial columbic efficiency (ICE) of SILIO nanoparticles are 946 to 1107 mAh/g and 72% to 77%, respectively, while SiOx exhibits 1,064 mAh/g of IRC only with 41.5% of ICE. In addition, the stability of SILIO in the air is evaluated to guarantee no unstable phases such as Li2Ox (x = 0–2) are present in SILIO. Through our findings, we suggest a new nanostructure model composed of crystalline Si, amorphous SiOx, and lithium silicate.

Funder

Korea Institute of Energy Research

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3