Author:
Vu N. T. T.,Tran N. P.,Nguyen N. H.
Abstract
This paper proposes an algorithm to generate the reference trajectory based on recurrent neural networks for an excavator arm working in a dynamic environment. Firstly, the dynamic of the plant which includes the tracking controller, the arm, and the pile is appropriated by a recurrent neural network. Next, the recurrent neural network combined with a Model Reference Adaptive Controller (MRAC) is used to calculate the reference trajectory for the system. In this paper, the generated trajectory is changed depending on the variation of the pile to maximize the dug weight. This algorithm is simple but effective because it only needs information about the weight at each duty cycle of the excavator. The efficiency of the overall system is verified through simulations. The results show that the proposed scheme gives a good performance, i.e. the dug weight always remains at the desired value (nominal load) as the pile changes its shape during working time.
Publisher
Engineering, Technology & Applied Science Research
Reference25 articles.
1. H. Feng et al., "Robotic excavator trajectory control using an improved GA based PID controller," Mechanical Systems and Signal Processing, vol. 105, pp. 153–168, May 2018.
2. R. Ding, B. Xu, J. Zhang, and M. Cheng, "Self-tuning pressure-feedback control by pole placement for vibration reduction of excavator with independent metering fluid power system," Mechanical Systems and Signal Processing, vol. 92, pp. 86–106, Aug. 2017.
3. H. Shao, H. Yamamoto, Y. Sakaida, T. Yamaguchi, Y. Yanagisawa, and A. Nozue, "Automatic Excavation Planning of Hydraulic Excavator," in Intelligent Robotics and Applications, Berlin, Heidelberg, 2008, pp. 1201–1211.
4. A. Stentz, J. Bares, S. Singh, and P. Rowe, "A robotic excavator for autonomous truck loading," in Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications, Victoria, BC, Canada, Oct. 1998, vol. 3, pp. 1885–189.
5. J. Seo, S. Lee, J. Kim, and S.-K. Kim, "Task planner design for an automated excavation system," Automation in Construction, vol. 20, no. 7, pp. 954–966, Nov. 2011.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献