Author:
Ben Khedher N.,Ramzi R.,Alatawi I. A.
Abstract
Drying is one of the most energy-intensive industrial processes. One of the techniques aiming to reduce energy consumption is the vibration technique which is generally employed to intensify the heat and mass transfer process. In this respect, this paper presents a three-dimensional numerical model to study the external vibration effects on the drying process of a porous medium. The model is based on a comparison of heat and mass transfer phenomena that arise during vibrating drying of unsaturated porous medium for two cases: triangular and sinusoidal external vibrations. The three-dimensional unstructured Control Volume Finite Element Method (CVFEM) is employed to simulate the vibrating drying. Numerical results of the time evolution of temperature, liquid saturation, pressure, and water content are compared and analyzed for the two cases.
Publisher
Engineering, Technology & Applied Science Research
Reference18 articles.
1. G. Musielak, D. Mierzwa, J. Kroehnke, “Mechanisms of drying acceleration by ultrasounds”, 19th International Drying Symposium, Lyon, France, August 24–27, 2014
2. V. Acosta, J. Bon, E. Riera, A. Pinto, “Ultrasonic drying processing chamber”, Physics Procedia, Vol. 70, pp. 854-857, 2015
3. S. J. Kowalski, “Ultrasound in wet materials subjected to drying: A modelling study”, International Journal of Heat and Mass Transfer, Vol. 84, pp. 998-1007, 2015
4. J. Kroehnke, J. Szadzińska, E. Radziejewska-Kubzdela, R. Biegańska-Marecik, G. Musielak, “Ultrasound- and microwave-assisted convective drying of carrots: Process kinetics and product's quality analysis”, Ultrasonics Sonochemistry, Vol. 48, pp. 249-258, 2018
5. S. M. Beck, H. Sabarez, V. Gaukel, K. Knoerzer, “Enhancement of convective drying by application of airborne ultrasound: A response surface approach”, Ultrasonics Sonochemistry, Vol. 21, pp. 2144-2150, 2014
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献