Author:
Fterich Mohamed,Souissi Ahmed Saadeddine,Toutti Ezzeddinne,Bentaher Hatem
Abstract
This research addresses the improvement of the performance of a solar dryer equipped with a PVT unit by integrating a heat exchanger into the drying system. The results indicated that introducing a heat exchanger into the drying process had a positive impact on enhancing and raising the drying temperature by harnessing the amount of free energy dissipated after the drying operation. The absorbed energy ranged from 30 J/s to 275 J/s from the hot air emitted throughout the drying process during the day, depending on the drying temperature. This paper also discusses the influence of the drying room design on the thermal balance within the room. Consequently, four different designs for the drying room were developed and studied with the COMSOL software. The findings revealed that the design-4, which optimally places two air inlets (one at the bottom and one at the top) on one side, whereas the opposing side has a centralized air outlet, utilizing a fan to ensure effective air circulation, is the best solution in terms of thermal balance and distribution of the drying air inside the drying chamber.
Publisher
Engineering, Technology & Applied Science Research