Author:
Dondapati Rajendra Dev,Sivaprakasam Thangaraju,Kumar Kollati Vijaya
Abstract
Skin cancer diagnosis, particularly melanoma detection, is an important healthcare concern worldwide. This study uses the ISIC2017 dataset to evaluate the performance of three deep learning architectures, VGG16, ResNet50, and InceptionV3, for binary classification of skin lesions as benign or malignant. ResNet50 achieved the highest training-set accuracy of 81.1%, but InceptionV3 outperformed the other classifiers in generalization with a validation accuracy of 76.2%. The findings reveal the various strengths and trade-offs of alternative designs, providing important insights for the development of dermatological decision support systems. This study contributes to the progress of automated skin cancer diagnosis and establishes the framework for future studies aimed at improving classification accuracy.
Publisher
Engineering, Technology & Applied Science Research
Reference28 articles.
1. U. B. Ansari and T. Sarode, "Skin Cancer Detection Using Image Processing," International Research Journal of Engineering and Technology, vol. 4, no. 4, pp. 2875–2882, Apr. 2017.
2. B. Cassidy, C. Kendrick, A. Brodzicki, J. Jaworek-Korjakowska, and M. H. Yap, "Analysis of the ISIC image datasets: Usage, benchmarks and recommendations," Medical Image Analysis, vol. 75, Jan. 2022, Art. no. 102305.
3. A. Yilmaz, M. Kalebasi, Y. Samoylenko, M. E. Guvenilir, and H. Uvet, "Benchmarking of Lightweight Deep Learning Architectures for Skin Cancer Classification using ISIC 2017 Dataset." arXiv, Oct. 23, 2021.
4. T. Imran, A. S. Alghamdi, and M. S. Alkatheiri, "Enhanced Skin Cancer Classification using Deep Learning and Nature-based Feature Optimization," Engineering, Technology & Applied Science Research, vol. 14, no. 1, pp. 12702–12710, Feb. 2024.
5. V. A. Rajendran and S. Shanmugam, "Automated Skin Cancer Detection and Classification using Cat Swarm Optimization with a Deep Learning Model," Engineering, Technology & Applied Science Research, vol. 14, no. 1, pp. 12734–12739, Feb. 2024.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献