An Efficient AdaBoost Algorithm for Enhancing Skin Cancer Detection and Classification

Author:

Gamil Seham1,Zeng Feng1ORCID,Alrifaey Moath2ORCID,Asim Muhammad34ORCID,Ahmad Naveed5

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410083, China

2. Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia

3. Center of Excellence in Quantum and Intelligent Computing, Prince Sultan University, Riyadh 11586, Saudi Arabia

4. EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

5. College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

Abstract

Skin cancer is a prevalent and perilous form of cancer and presents significant diagnostic challenges due to its high costs, dependence on medical experts, and time-consuming procedures. The existing diagnostic process is inefficient and expensive, requiring extensive medical expertise and time. To tackle these issues, researchers have explored the application of artificial intelligence (AI) tools, particularly machine learning techniques such as shallow and deep learning, to enhance the diagnostic process for skin cancer. These tools employ computer algorithms and deep neural networks to identify and categorize skin cancer. However, accurately distinguishing between skin cancer and benign tumors remains challenging, necessitating the extraction of pertinent features from image data for classification. This study addresses these challenges by employing Principal Component Analysis (PCA), a dimensionality-reduction approach, to extract relevant features from skin images. Additionally, accurately classifying skin images into malignant and benign categories presents another obstacle. To improve accuracy, the AdaBoost algorithm is utilized, which amalgamates weak classification models into a robust classifier with high accuracy. This research introduces a novel approach to skin cancer diagnosis by integrating Principal Component Analysis (PCA), AdaBoost, and EfficientNet B0, leveraging artificial intelligence (AI) tools. The novelty lies in the combination of these techniques to develop a robust and accurate system for skin cancer classification. The advantage of this approach is its ability to significantly reduce costs, minimize reliance on medical experts, and expedite the diagnostic process. The developed model achieved an accuracy of 93.00% using the DermIS dataset and demonstrated excellent precision, recall, and F1-score values, confirming its ability to correctly classify skin lesions as malignant or benign. Additionally, the model achieved an accuracy of 91.00% using the ISIC dataset, which is widely recognized for its comprehensive collection of annotated dermoscopic images, providing a robust foundation for training and validation. These advancements have the potential to significantly enhance the efficiency and accuracy of skin cancer diagnosis and classification. Ultimately, the integration of AI tools and techniques in skin cancer diagnosis can lead to cost reduction and improved patient outcomes, benefiting both patients and healthcare providers.

Funder

EIAS Data Science & Blockchain Lab at Prince Sultan University, Riyadh, Saudi Arabia

Prince Sultan University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3