Author:
Imran Talha,Alghamdi Ahmed S.,Alkatheiri Mohammed Saeed
Abstract
This paper presents a skin cancer classification model that combines a pre-trained Convolutional Neural Network (CNN) with a nature-inspired feature optimization algorithm. A custom dataset comprising both malignant and benign skin cancer microscopic illustrations is derived from the ISIC dataset of dermoscopic images. Several preprocessing steps are performed on the input pictures, such as histogram equalization, gamma correction, and white balance adjustment, to improve visibility, quality, and make color corrections. Deep feature extraction and pattern recognition are conducted on both enhanced and original dataset images using the pre-trained CNN model EfficientNetB0. As a result of fusing these features, the model can capture rich details from both dataset versions at the same time. Ant Colony Optimization (ACO), a nature-inspired feature selection algorithm is applied to perform model optimization by keeping the most relevant features and discarding the unnecessary ones. The optimized feature vector is then used with various SVM classifier kernels for the skin cancer classification task. The maximum achieved accuracy of the proposed model exceeded 98% through CB-SVM while maintaining an excellent prediction speed and reduced training time.
Publisher
Engineering, Technology & Applied Science Research
Reference32 articles.
1. U. B. Ansari and T. Sarode, "Skin Cancer Detection Using Image Processing," International Research Journal of Engineering and Technology, vol. 4, no. 4, pp. 2875–2881, 2017.
2. S. Jain, V. jagtap, and N. Pise, "Computer Aided Melanoma Skin Cancer Detection Using Image Processing," Procedia Computer Science, vol. 48, pp. 735–740, Jan. 2015.
3. N. Zhang, Y.-X. Cai, Y.-Y. Wang, Y.-T. Tian, X.-L. Wang, and B. Badami, "Skin cancer diagnosis based on optimized convolutional neural network," Artificial Intelligence in Medicine, vol. 102, Jan. 2020, Art. no. 101756.
4. P. Dubal, S. Bhatt, C. Joglekar, and S. Patil, "Skin cancer detection and classification," in 6th International Conference on Electrical Engineering and Informatics, Langkawi, Malaysia, Nov. 2017, pp. 1–6.
5. E. Jana, R. Subban, and S. Saraswathi, "Research on Skin Cancer Cell Detection Using Image Processing," in International Conference on Computational Intelligence and Computing Research, Coimbatore, India, Dec. 2017, pp. 1–8.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献