IoT Protocol-Enabled IDS based on Machine Learning

Author:

Alsulami Rehab,Alqarni Batoul,Alshomrani Rawan,Mashat Fatimah,Gazdar Tahani

Abstract

During the last decade, Internet of Things (IoT) devices have become widely used in smart homes, smart cities, factories, and many other areas to facilitate daily activities. As IoT devices are vulnerable to many attacks, especially if they are not frequently updated, Intrusion Detection Systems (IDSs) must be used to defend them. Many existing IDSs focus on specific types of IoT application layer protocols, such as MQTT, CoAP, and HTTP. Additionally, many existing IDSs based on machine learning are inefficient in detecting attacks in IoT applications because they use non-IoT-dedicated datasets. Therefore, there is no comprehensive IDS that can detect intrusions that specifically target IoT devices and their various application layer protocols. This paper proposes a new comprehensive IDS for IoT applications called IP-IDS, which can equivalently detect MQTT, HTTP, and CoAP-directed intrusions with high accuracy. Three different datasets were used to train the model: Bot-IoT, MQTT-IoT-IDS2020, and CoAP-DDoS. The obtained results showed that the proposed model outperformed the existing models trained on the same datasets. Additionally, the proposed DT and LSTM models reached an accuracy of 99.9%.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyberatttack Detection and Classification in IIoT systems using XGBoost and Gaussian Naïve Bayes: A Comparative Study;Engineering, Technology & Applied Science Research;2024-08-02

2. Integrating CNN-LSTM Networks with Statistical Filtering Techniques for Intelligent IoT Intrusion Detection;2024 8th International Conference on Smart Cities, Internet of Things and Applications (SCIoT);2024-05-14

3. Advancing IoT Cybersecurity: Adaptive Threat Identification with Deep Learning in Cyber-Physical Systems;Engineering, Technology & Applied Science Research;2024-04-02

4. A Survey on the Latest Intrusion Detection Datasets for Software Defined Networking Environments;Engineering, Technology & Applied Science Research;2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3