Advancing IoT Cybersecurity: Adaptive Threat Identification with Deep Learning in Cyber-Physical Systems
-
Published:2024-04-02
Issue:2
Volume:14
Page:13559-13566
-
ISSN:1792-8036
-
Container-title:Engineering, Technology & Applied Science Research
-
language:
-
Short-container-title:Eng. Technol. Appl. Sci. Res.
Author:
Atheeq C.,Sultana Ruhiat,Sabahath Syeda Asfiya,Mohammed Murtuza Ahmed Khan
Abstract
Securing Internet of Things (IoT)-enabled Cyber-Physical Systems (CPSs) can be challenging because security solutions intended for typical IT/OT systems may not be as effective in a CPS setting. The goal of this study is to create a mechanism for identifying and attributing two-level ensemble attacks that are specifically designed for use against Industrial Control Systems (ICSs). An original ensemble deep representation learning model is combined with decision tree algorithm to identify assaults on unbalanced ICS environments at the first level. An attack attribution network, which constitutes a collection of deep neural networks, is formed at the second level. The proposed model is tested using real-world datasets, notably those pertaining to water purification and gas pipelines. The results demonstrate that the proposed strategy outperforms other strategies with comparable computing complexity and that the recommended model outperforms the existing mechanisms.
Publisher
Engineering, Technology & Applied Science Research
Reference26 articles.
1. F. Zhang, H. A. D. E. Kodituwakku, J. W. Hines, and J. Coble, "Multilayer Data-Driven Cyber-Attack Detection System for Industrial Control Systems Based on Network, System, and Process Data," IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 4362–4369, Jul. 2019. 2. R. Ma, P. Cheng, Z. Zhang, W. Liu, Q. Wang, and Q. Wei, "Stealthy Attack Against Redundant Controller Architecture of Industrial Cyber-Physical System," IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9783–9793, Sep. 2019. 3. E. Nakashima, "Foreign hackers targeted U.S. water plant in apparent malicious cyber attack, expert says," Washington Post, Jun. 30, 2023. https://www.washingtonpost.com/blogs/checkpoint-washington/post/foreign-hackers-broke-into-illinois-water-plant-control-system-industry-expert-says/2011/11/18/gIQAgmTZYN_blog.html. 4. G. Falco, C. Caldera, and H. Shrobe, "IIoT Cybersecurity Risk Modeling for SCADA Systems," IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4486–4495, Dec. 2018. 5. J. Yang, C. Zhou, S. Yang, H. Xu, and B. Hu, "Anomaly Detection Based on Zone Partition for Security Protection of Industrial Cyber-Physical Systems," IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 4257–4267, May 2018.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing Image SEO using Deep Learning Algorithms: A Research Approach;Engineering, Technology & Applied Science Research;2024-08-02 2. A Dual-Step Approach for Implementing Smart AVS in Cars;Engineering, Technology & Applied Science Research;2024-08-02
|
|