A Review of Intrusion Detection Systems Using Machine and Deep Learning in Internet of Things: Challenges, Solutions and Future Directions

Author:

Asharf JavedORCID,Moustafa NourORCID,Khurshid Hasnat,Debie EssamORCID,Haider Waqas,Wahab Abdul

Abstract

The Internet of Things (IoT) is poised to impact several aspects of our lives with its fast proliferation in many areas such as wearable devices, smart sensors and home appliances. IoT devices are characterized by their connectivity, pervasiveness and limited processing capability. The number of IoT devices in the world is increasing rapidly and it is expected that there will be 50 billion devices connected to the Internet by the end of the year 2020. This explosion of IoT devices, which can be easily increased compared to desktop computers, has led to a spike in IoT-based cyber-attack incidents. To alleviate this challenge, there is a requirement to develop new techniques for detecting attacks initiated from compromised IoT devices. Machine and deep learning techniques are in this context the most appropriate detective control approach against attacks generated from IoT devices. This study aims to present a comprehensive review of IoT systems-related technologies, protocols, architecture and threats emerging from compromised IoT devices along with providing an overview of intrusion detection models. This work also covers the analysis of various machine learning and deep learning-based techniques suitable to detect IoT systems related to cyber-attacks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference211 articles.

1. The Changing Computing Paradigm With Internet of Things: A Tutorial Introduction

2. The Internet of Things: How to Capture the Value of IoT. Technical Report, Technical Report Mayhttps://www.mckinsey.com/featured-insights/internet-of-things/our-insights/the-internet-of-things-how-to-capture-the-value-of-iot#

3. The Internet of Things: A survey

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3