Real Time FPGA Implementation of an Efficient High Speed Harris Corner Detection Algorithm Based on High-Level Synthesis

Author:

Ghodhbani Refka,Saidani Taoufik,Alhomoud Ahmed,Alshammari Ahmad,Ahmed Rabie

Abstract

Computer vision systems use corner detection to identify features in an image. In applications such as motion detection, tracking, picture registration, and object recognition, corner detection is often one of the initial steps. In this paper, a real-time image processing system based on Harris corner detection was designed and implemented using Zynq architecture and model-based design tools. The system was based on a development board containing the Zynq-7000 chip, which consists of a combination of FPGA and microprocessor, and the image taken with a high-resolution camera was processed in real-time by applying color conversion and Harris corner detection. The filter hardware designs used in the system were made using the HDL Coder tool in Matlab/Simulink without writing HDL code. The hardware that receives images from the camera was designed on a model-based basis with the Xilinx Vivado 2020. The HDL code that was implemented on the Xilinx ZedBoard using Vivado software was then validated to ensure real-time operation with the incoming video stream. The results achieved exhibited superiority compared to prior implementations in terms of area efficiency (reduced number of gates on the target FPGA) and speed performance on an identical target card. Using the rapid prototyping approach, two alternative hardware accelerator designs were created using various high-level synthesis tools. This design used less than 50% of the host FPGA's logic resources and was at least 30% faster than current implementations.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An FPGA Accelerator for Real Time Hyperspectral Images Compression based on JPEG2000 Standard;Engineering, Technology & Applied Science Research;2024-04-02

2. Model-based Design of a High-Throughput Canny Edge Detection Accelerator on Zynq-7000 FPGA;Engineering, Technology & Applied Science Research;2024-04-02

3. Hardware Acceleration for Object Detection using YOLOv5 Deep Learning Algorithm on Xilinx Zynq FPGA Platform;Engineering, Technology & Applied Science Research;2024-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3