Author:
Ghodhbani Refka,Saidani Taoufik,Horrigue Layla,Algarni Asaad M.,Alshammari Muteb
Abstract
Lossless hyperspectral images have the advantage of reducing the data size, hence saving on storage and transmission costs. This study presents a dynamic pipeline hardware design for compressing and decompressing images using the Joint Photographic Experts Group-Lossless (JPEG2000) algorithm. The proposed architecture was specifically tailored for implementation on a Field Programmable Gate Array (FPGA) to accomplish efficient image processing. The introduction of a pipeline pause mechanism effectively resolves the issue of coding errors deriving from parameter modifications. Bit-plane coding was employed to enhance the efficacy of image coding calculations, leading to a reduction of parameter update delays. However, the context and decision creation procedure were streamlined, resulting in a significant enhancement in throughput. A hardware module utilizing the parallel block compression architecture was developed for JPEG2000 compression/decompression, allowing for configurable block size and bringing about enhanced image, compression/decompression, throughput, and reduced times. Verification results were obtained by implementing the proposed JPEG 2000 compression on a Zynq-7000 system-on-chip. The purpose of this system was to enable on-board satellite processing of hyperspectral image cubes with a specific focus on achieving lossless compression. The proposed architecture outperformed previous approaches by using fewer resources and achieving a higher compression ratio and clock frequency.
Publisher
Engineering, Technology & Applied Science Research
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献