Long-term prediction for high-resolution lane-changing data using temporal convolution network
Author:
Affiliation:
1. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, People’s Republic of China
2. School of Traffic & Transportation Engineering, Central South University, Changsha, People’s Republic of China
Funder
National Natural Science Foundation of China
Shanghai Science and Technology Committee
Fundamental Research Funds for the Central Universities
Publisher
Informa UK Limited
Subject
Transportation,Modelling and Simulation,Software
Link
https://www.tandfonline.com/doi/pdf/10.1080/21680566.2021.1950072
Reference38 articles.
1. Vehicle Lane Changing Model Based on Genetic Algorithm and Random Utility
2. Bai, S., J. Z. Kolter, and V. Koltun. 2018. “An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.” arXiv preprint arXiv 1803: 01271.
3. Personalized Driver/Vehicle Lane Change Models for ADAS
4. Predictive human operator model to be utilized as a controller using linear, neuro-fuzzy and fuzzy-ARX modeling techniques
5. Chen, Y. 2018. “Learning-Based Lane Following and Changing Behaviors for Autonomous Vehicle.” Master’s thesis. Carnegie Mellon University, Pittsburgh, PA.
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Lane change decision prediction: an efficient BO-XGB modelling approach with SHAP analysis;Transportmetrica A: Transport Science;2024-07-05
2. Investigating gap acceptance behavior based on correlated random parameter survival model with heterogeneity in means;Transportation Letters;2024-04-02
3. Analyzing Freeway Traffic Incident Clearance Time Using a Deep Survival Model;Journal of Transportation Engineering, Part A: Systems;2023-10
4. Modeling and analysis of mandatory lane-changing behavior considering heterogeneity in means and variances;Physica A: Statistical Mechanics and its Applications;2023-07
5. Rapid quantitative analysis of calcium in infant formula powder assisted by long short-term memory with variable importance using laser-induced breakdown spectroscopy;Applied Optics;2023-03-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3