Rapid quantitative analysis of calcium in infant formula powder assisted by long short-term memory with variable importance using laser-induced breakdown spectroscopy

Author:

Ding Yu1,Yang Linyu1,Chen Wenjie1,Chen Jing1,Zhao Xingqiang1,Luo Yong1,Zhou Wangping1

Affiliation:

1. Nanjing University of Information Science & Technology

Abstract

Calcium is the main mineral responsible for healthy bone growth in infants. Laser-induced breakdown spectroscopy (LIBS) was combined with a variable importance-based long short-term memory (VI-LSTM) for the quantitative analysis of calcium in infant formula powder. First, the full spectra were used to establish PLS (partial least squares) and LSTM models. The R2 and root-mean-square error (RMSE) of the test set (R P 2 and RMSE P ) were 0.1460 and 0.0093 in the PLS method, respectively, and 0.1454 and 0.0091 in the LSTM model, respectively. To improve the quantitative performance, variable selection based on variable importance was introduced to evaluate the contribution of input variables. The variable importance-based PLS (VI-PLS) model had R P 2 and RMSE P of 0.1454 and 0.0091, respectively, whereas the VI-LSTM model had R P 2 and RMSE P of 0.9845 and 0.0037, respectively. Compared with the LSTM model, the number of input variables in the VI-LSTM model was reduced to 276, R P 2 was improved by 114.63%, and RMSE P was reduced by 46.38%. The mean relative error of the VI-LSTM model was 3.33%. We confirm the predictive ability of the VI-LSTM model for the calcium element in infant formula powder. Thus, combining VI-LSTM modeling and LIBS has great potential for the quantitative elemental analysis of dairy products.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3