Polarized photoluminescence from Sn, Fe, and unintentionally doped β-Ga2O3

Author:

Cooke Jacqueline1ORCID,Lou Minhan1ORCID,Scarpulla Michael A.12ORCID,Sensale-Rodriguez Berardi1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, The University of Utah 1 , Salt Lake City, Utah 84112

2. Department of Materials Science and Engineering, The University of Utah 2 , Salt Lake City, Utah 84112

Abstract

In this work, we demonstrate that β-Ga2O3 shows orientation-dependent polarized photoluminescence (PL) emission and give a comprehensive insight into gallium oxide's PL spectral properties. We characterized the polarization and spectral dependencies of both the incident and emitted light for (−201) unintentionally doped (UID) as well as (−201) and (010) Sn-doped and Fe-doped crystals. We observed for UID and Sn-doped samples that the electron to self-trapped hole and native defect-related emission bands are linearly polarized with polarized emission intensities ordered as E || c (and c*) > E || a (and a*) > E || b. Furthermore, the spectral shape of emission does not change between the UID and Sn-doped samples; instead, the Sn-doping quenches the total PL spectral intensity. For Fe-doped samples, polarized red emission caused by unintentional Cr3+ doping generates emission intensities ordered E || b > E || c (and c*) > E || a (and a*). It is also observed that in some circumstances, for some doped crystals, the PL spectra can show variations not only in intensity but also in spectral shape along different polarization directions. As an example, the PL emission band for emission along c is blueshifted relative to that along a in Sn-doped β-Ga2O3.

Funder

Air Force Office of Scientific Research

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3