Interface-mediated ferroelectricity in PMN-PT/PZT flexible bilayer via pulsed laser deposition

Author:

Chen Rong1ORCID,Qi Zilian1ORCID,Xiong Yingfei1,Li Yicheng1ORCID,Zhang Xiaodong2ORCID,Cao Kun1ORCID

Affiliation:

1. State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology 1 , Hubei 430074, China

2. State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology 2 , Hubei 430074, China

Abstract

Ferroelectric thin-film bilayers of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT)/PbZr0.52Ti0.48O3 (PZT) were grown on a flexible substrate of mica using pulsed laser deposition. Growth of the bilayer was induced with a thin film of LaNiO3 (LNO) single crystal, which was deposited on a mica substrate through van der Waals epitaxy. The LNO thin film also serves as the electrode for the bilayer device. The growth of the LNO thin film along the ⟨ 100 ⟩ orientation adopts a “Stranski–Krastanov” mechanism, governed by the relaxation of elastic energy between LNO/mica. Compared with the single layers of PMN-PT or PZT, or the bilayer of PZT/PMN-PT, the PMN-PT/PZT bilayer exhibits enhanced ferroelectric properties, with remnant polarization up to 72 μC/cm2. In addition, polarization in the PMN-PT/PZT bilayer exhibits excellent resistance against mechanical bending fatigue over 108 switching cycles. Such improved performances are ascribed to spontaneous polarizations enhanced by the residual stress at the PMN-PT/PZT heterointerface, increased interfacial potential barrier against leakage, and suppressed diffusion of Nb or Mg across the interface.

Funder

National Natural Science Foundation of China

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3