Deposition rate and optical emissions in niobium oxide processes by reactive sputtering

Author:

Saccoman João1ORCID,Neto Nilton Francelosi A.12ORCID,da Silva José H. D.1ORCID

Affiliation:

1. Faculdade de Ciências, Universidade Estadual Paulista 1 , Bauru, São Paulo 17033-360, Brazil

2. Laboratório de Plasmas e Processos—LPP, Instituto Tecnológico de Aeronáutica 2 , São José dos Campos, São Paulo 12228-900, Brazil

Abstract

Niobium oxide films find various applications, such as antireflective optical layers, gas sensors, and solar cells. They also show promise for emerging applications such as electrochromic and photocatalytic devices. In order to optimize the deposition of niobium oxide films by RF reactive sputtering, a detailed investigation of the plasma parameters was performed. A pure metallic target and a mixture of Ar and O2 in different proportions were used in the experiments. The deposition power was varied between 120 and 260 W, while the total pressure was kept at 0.67 Pa throughout. Deposition rates, discharge self-bias voltage, and plasma optical emissions were monitored and analyzed. Additionally, computer simulations of the process utilizing existing models were conducted and a comparative analysis with the experimental results was performed. The main findings include mapping the deposition conditions as functions of oxygen flow rate. The flow ranges in which the deposition regime changes from metallic to oxygen contaminated target conditions were identified. The narrow O2 flow range associated with the regime changes was characterized by significant changes in the self-bias voltages and plasma emissions from oxygen, argon, and niobium. The observations evidence the importance of the detailed analysis of the deposition process to get the desired stoichiometry and optimized film properties.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3