Plasma electron characterization in electron chemical vapor deposition

Author:

Niiranen Pentti1ORCID,Kapran Anna2ORCID,Nadhom Hama1ORCID,Čada Martin2ORCID,Hubička Zdeněk2ORCID,Pedersen Henrik1ORCID,Lundin Daniel1ORCID

Affiliation:

1. Department of Physics, Chemistry and Biology, Linköping University 1 , SE-581 83 Linköping, Sweden

2. Academy of Science of the Czech Republic, Institute of Physics 2 , Na Slovance 2, 18221 Prague, Czech Republic

Abstract

Recently, a novel approach of depositing metallic films with chemical vapor deposition (CVD), using plasma electrons as reducing agents, has been presented and is herein referred to as e-CVD. By applying a positive substrate bias to the substrate holder, plasma electrons are drawn to the surface of the substrate, where the film growth occurs. In this work, we have characterized the electron flux at the substrate position in terms of energy and number density as well as the plasma potential and floating potential when maintaining an unbiased and a positively biased substrate. The measurements were performed using a modified radio frequency Sobolewski probe to overcome issues due to the coating of conventional electrostatic probes. The plasma was generated using a DC hollow cathode plasma discharge at various discharge powers and operated with and without precursor gas. The results show that the electron density is typically around 1016 m−3 and increases with plasma power. With a precursor, an increase in the substrate bias shows a trend of increasing electron density. The electron temperature does not change much without precursor gas and is found in the range of 0.3–1.1 eV. Introducing a precursor gas to the vacuum chamber shows an increase in the electron temperature to a range of 1–5 eV and with a trend of decreasing electron temperature as a function of discharge power. From the values of the plasma potential and the substrate bias potential, we were able to calculate the potential difference between the plasma and the substrate, giving us insight into what charge carriers are expected at the substrate under different process conditions.

Funder

Vetenskapsrådet

Lam Research

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3