Suppression of phase segregations in Ge–Fe–Co–Ni–Mn films by high-entropy effect

Author:

Sun Sen1ORCID,Jiang Wenyu2,Liu Qinxin1,Jiang Yueyong1,Zhu Tianyi1,Hu Jie1,Song Honglian1,Yang Zheng3,Hui Xinfeng3,Lao Yuanxia3ORCID

Affiliation:

1. Nuclear Waste Disposal Engineering Research Center, School of Mathematics and Physics, Mianyang Teachers’ College 1 , Mianyang 621000, People’s Republic of China

2. School of Physical Science and Technology, Guangxi University 2 , Nanning 530001, People’s Republic of China

3. Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University 3 , Nanning 530001, People’s Republic of China

Abstract

Fe–Co–Ni–Mn films doped with different concentrations of Ge were prepared on the Si substrates by using radio frequency magnetron sputtering. Transmission electron microscopy (with an energy dispersive x-ray spectrometer) and an x-ray diffractometer were used to systematically study the microstructure evolution of the Fe–Co–Ni–Mn–Ge films. The results indicate that the Fe–Co–Ni–Mn films doped with a large amount of Ge show significant element segregation after rapid high-temperature annealing. However, with the decrease in the doping amount of Ge to approximately equal molar ratio with magnetic elements, Ge and magnetic elements achieve perfect mutual dissolution at the same annealing conditions, forming single-phase solid solution. Electrical transport tests suggest that its electrical property is close to semiconductors. The mechanism of enhanced mutual solubility between semiconductor elements and magnetic elements is discussed in detail.

Funder

National Natural Science Foundation of China

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3