Optimization of silicon etch rate in a CF4/Ar/O2 inductively coupled plasma

Author:

Levko Dmitry1ORCID,Raja Laxminarayan L.2ORCID

Affiliation:

1. Esgee Technologies Inc., Austin, Texas 78746

2. Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712

Abstract

We use a fluid plasma model coupled with Maxwell's equations to analyze the influence of various parameters on the silicon etching rate by inductively coupled low-pressure plasma (ICP) generated in a CF4/O2/Ar mixture. These parameters include different argon and oxygen fractions in the feedgas, the gas residence time, and the discharge power. The simulation results show that the optimal etching rate is obtained when the gas residence time in the reactor is comparable to the time scale of dissociation reactions of feedgas CF4. We find that the etch rate remains almost constant for argon fraction in the mixture <50% and decreases for larger argon fractions. Based on these results, we discuss the influence of the argon fraction on the energy efficiency of the fluorine atoms formation in the ICP reactor. It is found that, for the conditions of our studies, there is the optimal etch rate for the oxygen fraction in the mixture of ∼5%. We demonstrate that the conventional explanation of this result is not applicable to the diffusion-controlled discharges and propose an alternative explanation. Finally, the increasing etching rate is obtained for the discharge power in the range of 102–103 W.

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of external circuitry on CF4 breakdown process in capacitively coupled plasma;Journal of Vacuum Science & Technology B;2023-09-01

2. Effect of process gas on Side Wall Angle in Silicon Trench Etching;2023 China Semiconductor Technology International Conference (CSTIC);2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3