Time-resolved ion energy distribution in pulsed inductively coupled argon plasma with/without DC bias

Author:

Chen Zhiying1,Blakeney Joel1,Carruth Megan1ORCID,Ventzek Peter L. G.1ORCID,Ranjan Alok1

Affiliation:

1. Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78741

Abstract

Pulsed plasmas have emerged as promising candidates as a means for precise control of ion energy/angle dependent surface processes and surface chemistry during the plasma process, which are key to 3 nm and beyond device fabrication. The ion energy distribution functions (IEDFs) and ion fluxes over a pulsed period are important to understand as they directly influence the feature profile, damage, and selectivity. We have developed an advanced plasma diagnostics (APD) system with advanced pulsing capability, including source, bias, and synchronous pulsing. It is a compact inductively coupled plasma system with a RF source frequency of 13.56 MHz intended to diagnose the general behavior of biased high density plasmas. We report the effect of the pulse frequency (2–10 kHz), RF duty cycle (25%–75%), DC duty cycle (5%–50%), phase lag (50–60  μs), RF power (120–180 W), DC bias voltage (0–150 V), and discharge pressure (20–80 mTorr) on the IEDFs and ion flux over a pulse period on the APD system. The time-resolved IEDFs and ion flux were measured using a retarding field energy analyzer. The ion energy transitions in a pulsed period from a plasma ignition stage to a stable stage and from plasma in a glow period to an afterglow period are studied. The results indicate that the ion energy and ion flux are tailored by RF pulsing and RF-DC pulsing. The time-resolved IEDF demonstrates the merits of pulsing to precisely control ion energy and flux, and the ion energy spread was narrowed by the pulsed plasma.

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3