Exploring oxide-nitride-oxide scalloping behavior with small gap structure and chemical analysis after fluorocarbon or hydrofluorocarbon plasma processing

Author:

Chung Sang-Jin12ORCID,Luan Pingshan3ORCID,Park Minjoon3ORCID,Metz Andrew3ORCID,Oehrlein Gottlieb S.12ORCID

Affiliation:

1. Department of Material Science and Engineering, University of Maryland 1 , College Park, Maryland 20742

2. Institute for Research in Electronic and Applied Physics, University of Maryland 2 , College Park, Maryland 20742

3. TEL Technology Center, America, LLC 3 , Albany, New York 12203

Abstract

The scalloping of oxide-nitride-oxide (ONO) stacked layers on vertical sidewalls during high-aspect-ratio contact etch is commonly seen and characterized by the horizontal etching of oxide and nitride layers at different etch rates. To understand the mechanisms of ONO scalloping in complex plasma chemistry, it is crucial to examine the surface chemistry of silicon dioxide and silicon nitride processed with single fluorocarbon (FC) or hydrofluorocarbon (HFC) gases. To simulate the isotropic etching of SiO2 and Si3N4 sidewalls, we use a horizontal trench structure to study the effect of neutral radicals produced by FC (Ar/C4F8), HFC (Ar/CH3F, CH2F2, or CH3F), FC/HFC (Ar/C4F8/CH2F2), or FC/H2 (Ar/C4F8/H2), plasma for aspect-ratio (AR) up to 25. To eliminate the effect of ions, oxide and nitride trench structures were treated by inductively coupled plasma. The changes in the film thickness as a function of AR were probed by ellipsometry. Additionally, x-ray photoelectron spectroscopy (XPS) measurements on oxide and nitride substrates processed by Ar/C4F8 and Ar/CH2F2 plasma were performed at various locations: outside of the trench structure, near the trench entrance (AR = 4.3), and deeper in the trench (AR = 12.9). We find a variety of responses of the trench sidewalls including both FC deposition and spontaneous etching which reflect (1) the nature of the FC and HFC gases, (2) the nature of the surfaces being exposed, and (3) the position relative to the trench entrance. Overall, both the etching and deposition patterns varied systematically depending on the precursor gas. We found that the ONO scalloping at different ARs is plasma chemistry dependent. Oxide showed a binary sidewall profile, with either all deposition inside of the trench (with FC and FC/H2 processing) or etching (HFC and FC/HFC). Both profiles showed a steady attenuation of either the deposition or etching at higher AR. On the nitride substrate, etching was observed near the entrance for HFC precursors, and maximum net etching occurred at higher AR for high F:C ratio HFC precursors like CHF3. XPS measurements performed with Ar/C4F8 and Ar/CH2F2 treated surfaces showed that Ar/C4F8 overall deposited a fluorine-rich film outside and inside of the trench, while Ar/CH2F2 mostly deposited a cross-linked film (except near the trench entrance) with an especially thin graphitic-like film deep inside the trench.

Funder

Tokyo Electron

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3