Review of recent studies on nanoscale electrical junctions and contacts: Quantum tunneling, current crowding, and interface engineering

Author:

Banerjee Sneha1ORCID,Zhang Peng1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Michigan State University , East Lansing, Michigan 48824

Abstract

The study of charge carrier transport at nanoscale electrical contacts is crucial for the development of next-generation electronics. This paper reviews recent modeling efforts on quantum tunneling, current crowding, and contact resistance across electrical interfaces with nanometer scale dimensions. A generalized self-consistent model for quantum tunneling induced electron transport in metal–insulator–metal (MIM) junctions is summarized. Rectification of a dissimilar MIM junction is reviewed. A modified two-dimensional (2D) transmission line model is used to investigate the effects of spatially varying specific contact resistivity along the contact length. The model is applied to various types of electrical contacts, including ohmic contacts, MIM junction based tunneling contacts, and 2D-material-based Schottky contacts. Roughness engineering is recently proposed to offer a possible paradigm for reducing the contact resistance of 2D-material-based electrical contacts. Contact interface engineering, which can mitigate current crowding near electrical contacts by spatially designing the interface layer thickness or properties, without requiring an additional material or component, is briefly reviewed. Tunneling engineering is suggested to eliminate severe current crowding in highly conductive ohmic contacts by introducing a thin tunneling layer or gap between the contact members. Unsolved problems and challenges are also discussed.

Funder

Air Force Office of Scientific Research

Sandia National Laboratories

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3