Revealing the controlling mechanisms of atomic layer etching for high-k dielectrics in conventional inductively coupled plasma etching tool

Author:

Kuzmenko Vitaly1ORCID,Melnikov Alexander1ORCID,Isaev Alexandr1ORCID,Miakonkikh Andrey1ORCID

Affiliation:

1. Valiev Institute of Physics and Technology RAS , Moscow 117218, Russia

Abstract

The possibilities of optimization of the two-step atomic layer etching process for HfO2 in conventional plasma etching tools were studied. The surface modification step was realized in Ar/CF4/H2 plasma, and the reaction between the modified layer and the surface was activated by Ar ion bombardment from the plasma in the second step. Investigation of the effects of activation step duration, DC bias during activation, and Ar plasma density was carried out. The mechanism of the etching process has been shown to involve fluorination of oxide during the modification step and subsequent removal of fluorine-containing particles at the activation step. An increase in parasitic sputtering rate and lower process saturation with the growth of DC bias during activation was demonstrated. The advantage of the ALE process in lower surface roughness over the conventional etching process was shown. Similar etching characteristics of HfO2 and ZrO2 suggest a similarity in the etching process for the mixed hafnium-zirconium oxide material.

Funder

Russian Science Foundation

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3