Abstract
Virtual Learning Environments (VLE), such as Moodle and Blackboard, store vast data to help identify students' performance and engagement. As a result, researchers have been focusing their efforts on assisting educational institutions in providing machine learning models to predict at-risk students and improve their performance. However, it requires an efficient approach to construct a model that can ultimately provide accurate predictions. Consequently, this study proposes a hybrid machine learning framework to predict students' performance using eight classification algorithms and three ensemble methods (Bagging, Boosting, Voting) to determine the best-performing predictive model. In addition, this study used filter-based and wrapper-based feature selection techniques to select the best features of the dataset related to students' performance. The obtained results reveal that the ensemble methods recorded higher predictive accuracy when compared to single classifiers. Furthermore, the accuracy of the models improved due to the feature selection techniques utilized in this study.
Publisher
International Association of Online Engineering (IAOE)
Subject
General Engineering,Education
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献