Prediction of students’ performance in online learning using supervised machine learning

Author:

Khor Ean TengORCID,Darshan Dave

Abstract

PurposeThis study leverages social network analysis (SNA) to visualise the way students interacted with online resources and uses the data obtained from SNA as features for supervised machine learning algorithms to predict whether a student will successfully complete a course.Design/methodology/approachThe exploration and visualisation of the data were first carried out to gain a better understanding of the students, the course(s) each student was enrolled in and each course’s virtual learning resources. Following this, the construction of the social network graphs was performed to depict how each student behaved online before the degree centralities were computed for each of the nodes in a social network graph. Data pre-processing to assign labels based on the final result a student obtained in a course was then performed before we trained and tested models to predict which students did or did not graduate.FindingsThe study’s findings demonstrate that the constructed predictive model has good performance, as shown by the accuracy, precision, recall and f-measure metrics. The outcomes also showed that students’ use of online resources is a crucial element that influences how well they perform in their academics.Originality/valueThe similarity index is as low as 9%.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3