Machine Vision-Based Scanning Strategy for Defect Detection in Post-Additive Manufacturing

Author:

Zhang S.,Chen Z.,Granland K.,Tang Y.,Chen C.

Abstract

AbstractThe surge in 3D printer availability, and its applications over the past decade as an alternative to industry-standard subtractive manufacturing, has revealed a lack of post-manufacturing quality control. Developers have looked towards automated machine learning (ML) and machine-vision algorithms, which can be effective in developing such additive manufacturing (AM) technologies for industry-wide adoption. Currently, most research has explored in-situ monitoring methods, which aim to detect printing errors during manufacturing. A significant limitation is the single, fixed monitoring angle and low resolution, which fail to identify small or hidden defects due to part geometry. Therefore, we investigated a novel ex-situ scanning strategy that combines the advantages of robotics and machine vision to address the limitations; specifically, the viability of image-recognition algorithms in the context of post-fabrication defect detection, and how such algorithms can be integrated into current infrastructure by automatically classifying surface faults in printed parts. A state-of-the-art and widely accepted ML-based vision model, YOLO, was adapted and trained by scanning for prescribed defect categories in a sample of simple parts to identify the strengths of this method over in-situ monitoring. An automated scanning algorithm that uses a KUKA robotic arm and high-definition camera is proposed and its performance was assessed according to the percentage of accurate defect predictions, in comparison with a typical in-situ model.

Publisher

Springer Nature Singapore

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3