1. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Zhao S (2021) Advances and open problems in federated learning. Found Trends Mach Learn 14(1–2):1–210. https://doi.org/10.1561/2200000083
2. Konečný J, McMahan HB, Yu FX, Richtarik P, Suresh AT, Bacon D (2016) Federated learning: strategies for improving communication efficiency. NIPS Workshop on Private Multi-Party Machine Learning. Retrieved from https://arxiv.org/abs/1610.05492
3. McMahan B, Moore E, Ramage D, Hampson S, Arcas BA (2017) Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th international conference on artificial intelligence and statistics; Proc Mach Learn Res 54:1273–1282. https://proceedings.mlr.press/v54/mcmahan17a.html
4. Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, Bakas S (2020) Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep 10(1):12598. https://doi.org/10.1038/s41598-020-69250-1
5. Yang T, Andrew G, Eichner H, Sun H, Li W, Kong N, Beaufays F (2018) Applied federated learning: improving google keyboard query suggestions. https://arxiv.org/abs/1812.02903