Architectural Design of a Blockchain-Enabled, Federated Learning Platform for Algorithmic Fairness in Predictive Health Care: Design Science Study (Preprint)

Author:

Liang XuepingORCID,Zhao JuanORCID,Chen YanORCID,Bandara ErangaORCID,Shetty SachinORCID

Abstract

BACKGROUND

Developing effective and generalizable predictive models is critical for disease prediction and clinical decision-making, often requiring diverse samples to mitigate population bias and address algorithmic fairness. However, a major challenge is to retrieve learning models across multiple institutions without bringing in local biases and inequity, while preserving individual patients’ privacy at each site.

OBJECTIVE

This study aims to understand the issues of bias and fairness in the machine learning process used in the predictive health care domain. We proposed a software architecture that integrates federated learning and blockchain to improve fairness, while maintaining acceptable prediction accuracy and minimizing overhead costs.

METHODS

We improved existing federated learning platforms by integrating blockchain through an iterative design approach. We used the design science research method, which involves 2 design cycles (federated learning for bias mitigation and decentralized architecture). The design involves a bias-mitigation process within the blockchain-empowered federated learning framework based on a novel architecture. Under this architecture, multiple medical institutions can jointly train predictive models using their privacy-protected data effectively and efficiently and ultimately achieve fairness in decision-making in the health care domain.

RESULTS

We designed and implemented our solution using the Aplos smart contract, microservices, Rahasak blockchain, and Apache Cassandra–based distributed storage. By conducting 20,000 local model training iterations and 1000 federated model training iterations across 5 simulated medical centers as peers in the Rahasak blockchain network, we demonstrated how our solution with an improved fairness mechanism can enhance the accuracy of predictive diagnosis.

CONCLUSIONS

Our study identified the technical challenges of prediction biases faced by existing predictive models in the health care domain. To overcome these challenges, we presented an innovative design solution using federated learning and blockchain, along with the adoption of a unique distributed architecture for a fairness-aware system. We have illustrated how this design can address privacy, security, prediction accuracy, and scalability challenges, ultimately improving fairness and equity in the predictive health care domain.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3