1. Antunes, R.S., André da Costa, C., Küderle, A., Yari, I.A., Eskofier, B.: Federated learning for healthcare: systematic review and architecture proposal. ACM Trans. Intell. Syst. Technol. 13(4), 1–23 (2022)
2. Bharati, S., Mondal, M.R.H., Podder, P., Prasath, V.S.: Federated learning: Applications, challenges and future directions. Int. J. Hybrid Intell. Syst. 18(1–2), 19–35 (2022)
3. Bonawitz, K., et al.: Towards federated learning at scale: system design. Proc. Mach. Learn. Syst. 1, 374–388 (2019)
4. Cao, L.: Beyond IID: non-IID thinking, informatics, and learning. IEEE Intell. Syst. 37(4), 5–17 (2022)
5. Chai, Z., Fayyaz, H., Fayyaz, Z., Anwar, A., Zhou, Y., Baracaldo, N., Ludwig, H., Cheng, Y.: Towards taming the resource and data heterogeneity in federated learning. In: 2019 USENIX Conference on OpML 2019, pp. 19–21 (2019)