Federated Learning for Healthcare: Systematic Review and Architecture Proposal

Author:

Antunes Rodolfo Stoffel1ORCID,André da Costa Cristiano1,Küderle Arne2,Yari Imrana Abdullahi2,Eskofier Björn2

Affiliation:

1. Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil

2. Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayern, Germany

Abstract

The use of machine learning (ML) with electronic health records (EHR) is growing in popularity as a means to extract knowledge that can improve the decision-making process in healthcare. Such methods require training of high-quality learning models based on diverse and comprehensive datasets, which are hard to obtain due to the sensitive nature of medical data from patients. In this context, federated learning (FL) is a methodology that enables the distributed training of machine learning models with remotely hosted datasets without the need to accumulate data and, therefore, compromise it. FL is a promising solution to improve ML-based systems, better aligning them to regulatory requirements, improving trustworthiness and data sovereignty. However, many open questions must be addressed before the use of FL becomes widespread. This article aims at presenting a systematic literature review on current research about FL in the context of EHR data for healthcare applications. Our analysis highlights the main research topics, proposed solutions, case studies, and respective ML methods. Furthermore, the article discusses a general architecture for FL applied to healthcare data based on the main insights obtained from the literature review. The collected literature corpus indicates that there is extensive research on the privacy and confidentiality aspects of training data and model sharing, which is expected given the sensitive nature of medical data. Studies also explore improvements to the aggregation mechanisms required to generate the learning model from distributed contributions and case studies with different types of medical data.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 208 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3