Reference12 articles.
1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: 20th International Conference on Very Large Data Bases, pp. 487–499 (1994)
2. Goparaju, A., Brazier, T., Salem, S.: Mining representative maximal dense cohesive subnetworks. Netw. Model. Anal. Health Inf. Bioinform. 4(1), 29 (2015)
3. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Mining Knowl. Discov. 8(1), 53–87 (2004)
4. Lee, G., Yun, U., Ryang, H., Kim, D.: Approximate maximal frequent pattern mining with weight conditions and error tolerance. Int. J. Pattern Recogn. Artif. Intell. 30(6), 1650012:1–1650012:42 (2016)
5. Li, H., Zhang, N.: Probabilistic maximal frequent itemset mining over uncertain databases. In: 21st International Conference on Database Systems for Advanced Applications, pp. 149–163 (2016)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献