Author:
Tian Weidong,Mei Jianqiang,Zhou Hongjuan,Zhao Zhongqiu
Publisher
Springer International Publishing
Reference15 articles.
1. Moens, S., Aksehirli, E., Goethals, B.: Frequent itemset mining for big data. In: IEEE International Conference on Big Data, pp. 111–118 (2013)
2. Liu, G., Li, J., Wong, L.: A new concise representation of frequent itemsets using generators and a positive border. Knowl. Inf. Syst. 17(1), 35–56 (2008)
3. Tseng, V.S., Wu, C., Fournier-Viger, P., Yu, P.S.: Efficient algorithms for mining the concise and lossless representation of high utility itemsets. IEEE Trans. Knowl. Data Eng. 27(3), 726–739 (2015)
4. Liu, G., Li, J., Wong, L., et al.: Positive borders or negative borders: how to make lossless generator-based representations concise. In: SIAM International Conference on Data Mining – SDM (2006)
5. Hui-ling, P., Yun-xing, S.: A new FP-tree-based algorithm MMFI for mining the maximal frequent itemsets. IEEE Int. Conf. Comput. Sci. Autom. Eng. (CSAE) 2, 61–65 (2012)